The multivariate Kendall-$\tau$ statistic, denoted by $K_n$, plays a significant role in robust statistical analysis. This paper establishes the limiting properties of the empirical spectral distribution (ESD) of $K_n$. We demonstrate that the ESD of $\frac{1}{2}pK_n$ converges almost surely to the Mar\v{c}enko--Pastur law with variance parameter $\frac{1}{2}$, analogous to the classical result for sample covariance matrices. Using Stieltjes transform techniques, we extend these results to the independent component model, deriving a fixed-point equation that characterizes the limiting spectral distribution of $\frac{1}{2}tr\Sigma K_n$. The theoretical findings are validated through comprehensive simulation studies.


翻译:多元Kendall-τ统计量(记为$K_n$)在稳健统计分析中具有重要作用。本文建立了$K_n$的经验谱分布(ESD)的极限性质。我们证明$\frac{1}{2}pK_n$的ESD几乎必然收敛于方差参数为$\frac{1}{2}$的Marčenko–Pastur律,这与样本协方差矩阵的经典结果类似。通过Stieltjes变换技术,我们将这些结果推广至独立分量模型,推导出刻画$\frac{1}{2}tr\Sigma K_n$极限谱分布的定点方程。理论结果通过全面的模拟研究得到验证。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
15+阅读 · 2019年3月16日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员