We explore the asymptotic convergence and nonasymptotic maximal inequalities of supermartingales and backward submartingales in the space of positive semidefinite matrices. These are natural matrix analogs of scalar nonnegative supermartingales and backward nonnegative submartingales, whose convergence and maximal inequalities are the theoretical foundations for a wide and ever-growing body of results in statistics, econometrics, and theoretical computer science. Our results lead to new concentration inequalities for either martingale dependent or exchangeable random symmetric matrices under a variety of tail conditions, encompassing now-standard Chernoff bounds to self-normalized heavy-tailed settings. Further, these inequalities are usually expressed in the Loewner order, are sometimes valid simultaneously for all sample sizes or at an arbitrary data-dependent stopping time, and can often be tightened via an external randomization factor.


翻译:本文探讨了正定矩阵空间中超鞅与后向次鞅的渐近收敛性及非渐近极大不等式。这些是标量非负超鞅与后向非负次鞅的自然矩阵类比,其收敛性与极大不等式构成了统计学、计量经济学和理论计算机科学中广泛且不断增长的理论成果的基石。我们的研究导出了一系列在多种尾部条件下适用于鞅相依或可交换随机对称矩阵的新集中不等式,涵盖了从现行标准的切尔诺夫界到自归一化重尾设置的多种情形。此外,这些不等式通常以勒夫纳序形式表述,有时对所有样本量或任意数据依赖的停时同时成立,并且常可通过外部随机化因子进行加强。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
18+阅读 · 2022年11月21日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
12+阅读 · 2019年2月26日
Arxiv
29+阅读 · 2017年12月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
18+阅读 · 2022年11月21日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
12+阅读 · 2019年2月26日
Arxiv
29+阅读 · 2017年12月6日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员