We present a scalable Bayesian framework for the analysis of confocal fluorescence spectroscopy data, addressing key limitations in traditional fluorescence correlation spectroscopy methods. Our framework captures molecular motion, microscope optics, and photon detection with high fidelity, enabling statistical inference of molecule trajectories from raw photon count data, introducing a superresolution parameter which further enhances trajectory estimation beyond the native time resolution of data acquisition. To handle the high dimensionality of the arising posterior distribution, we develop a family of Hamiltonian Monte Carlo (HMC) algorithms that leverages the unique characteristics inherent to spectroscopy data analysis. Here, due to the highly-coupled correlation structure of the target posterior distribution, HMC requires the numerical solution of a stiff ordinary differential equation containing a two-scale discrete Laplacian. By considering the spectral properties of this operator, we produce a CFL-type integrator stability condition for the standard St\"ormer-Verlet integrator used in HMC. To circumvent this instability we introduce a semi-implicit (IMEX) method which treats the stiff and non-stiff parts differently, while leveraging the sparse structure of the discrete Laplacian for computational efficiency. Detailed numerical experiments demonstrate that this method improves upon fully explicit approaches, allowing larger HMC step sizes and maintaining second-order accuracy in position and energy. Our framework provides a foundation for extensions to more complex models such as surface constrained molecular motion or motion with multiple diffusion modes.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
1+阅读 · 2024年12月17日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员