A recent line of work in NLP focuses on the (dis)ability of models to generalise compositionally for artificial languages. However, when considering natural language tasks, the data involved is not strictly, or locally, compositional. Quantifying the compositionality of data is a challenging task, which has been investigated primarily for short utterances. We use recursive neural models (Tree-LSTMs) with bottlenecks that limit the transfer of information between nodes. We illustrate that comparing data's representations in models with and without the bottleneck can be used to produce a compositionality metric. The procedure is applied to the evaluation of arithmetic expressions using synthetic data, and sentiment classification using natural language data. We demonstrate that compression through a bottleneck impacts non-compositional examples disproportionately and then use the bottleneck compositionality metric (BCM) to distinguish compositional from non-compositional samples, yielding a compositionality ranking over a dataset.


翻译:国家语言方案最近的工作重点是模型的(残疾)性,以概括人造语言的构成。然而,在考虑自然语言任务时,所涉数据并非严格或局部的构成性。数据构成性量化是一项具有挑战性的任务,主要针对短话进行了调查。我们使用循环神经模型(Tree-LSTMs),其瓶颈限制了节点之间的信息传输。我们说明,比较模型中的数据在有瓶颈和没有瓶颈的模型中的表述可以用来得出一个构成性指标。该程序适用于利用合成数据对算术表达进行评估,以及利用自然语言数据对情绪分类进行评估。我们证明,通过瓶点影响非组合示例进行压缩不相称,然后使用瓶颈构成性指标(BCM)来区分组成与非组合样本,从而得出数据集的构成性等级。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员