Nowadays, large language models (LLMs) are published as a service and can be accessed by various applications via APIs, also known as language-model-as-a-service (LMaaS). Without knowing the generation length of requests, existing serving systems serve requests in a first-come, first-served (FCFS) manner with a fixed batch size, which leads to two problems that affect batch serving efficiency. First, the generation lengths of requests in a batch vary, and requests with short generation lengths must wait for requests with long generation lengths to finish during the batch serving procedure. Second, requests with longer generation lengths consume more memory during serving. Without knowing the generation lengths of batched requests, the batch size is always set small to avoid the out-of-memory (OOM) error, thus preventing the GPU from being fully utilized. In this paper, we find that a significant number of popular applications in the LMaaS scenario have a positive correlation between the generation length and the length of raw user input. Based on this observation, we propose Magnus, which can accurately predict the request generation length with the user input length, application-level, and user-level semantic features. Accordingly, Magnus can achieve high request throughput by batching requests of similar generation lengths together with adaptive batch sizes. Besides, Magnus can also schedule batches with the highest response ratio next (HRRN) policy to reduce request response time. Experiments conducted on our testbed show that Magnus improves request throughput by up to 234\% and reduces response time by up to 89.7\% compared to baselines.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
18+阅读 · 2023年9月2日
Arxiv
92+阅读 · 2020年2月28日
Arxiv
12+阅读 · 2019年1月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员