Collective perception is a key aspect for autonomous driving in smart cities as it aims to combine the local environment models of multiple intelligent vehicles in order to overcome sensor limitations. A crucial part of multi-sensor fusion is track-to-track association. Previous works often suffer from high computational complexity or are based on heuristics. We propose an association algorithms based on stochastic optimization, which leverages a multidimensional likelihood incorporating the number of tracks and their spatial distribution and furthermore computes several association hypotheses. We demonstrate the effectiveness of our approach in Monte Carlo simulations and a realistic collective perception scenario computing high-likelihood associations in ambiguous settings.


翻译:集体感知是智慧城市中自动驾驶的关键环节,旨在融合多辆智能车辆的局部环境模型以克服传感器局限。多传感器融合的核心在于航迹关联。现有方法常面临计算复杂度高或依赖启发式规则的局限。本文提出一种基于随机优化的关联算法,该算法利用包含航迹数量及其空间分布的多维似然函数,并计算多种关联假设。通过蒙特卡洛仿真和真实集体感知场景的实验验证,本方法能在模糊环境下高效计算高似然关联结果。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
49+阅读 · 2021年9月11日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员