Atypical mitotic figures (AMFs) represent abnormal cell division associated with poor prognosis. Yet their detection remains difficult due to low prevalence, subtle morphology, and inter-observer variability. The MIDOG 2025 challenge introduces a benchmark for AMF classification across multiple domains. In this work, we fine-tuned the recently published DINOv3-H+ vision transformer, pretrained on natural images, using low-rank adaptation (LoRA), training only ~1.3M parameters in combination with extensive augmentation and a domain-weighted Focal Loss to handle domain heterogeneity. Despite the domain gap, our fine-tuned DINOv3 transfers effectively to histopathology, reaching first place on the final test set. These results highlight the advantages of DINOv3 pretraining and underline the efficiency and robustness of our fine-tuning strategy, yielding state-of-the-art results for the atypical mitosis classification challenge in MIDOG 2025.


翻译:非典型有丝分裂像(AMFs)是与不良预后相关的异常细胞分裂现象。然而,由于其低发生率、形态学特征细微以及观察者间差异性,其检测仍具挑战性。MIDOG 2025挑战赛提出了一个跨多领域的AMF分类基准。本研究采用低秩自适应(LoRA)方法,对近期发布的基于自然图像预训练的DINOv3-H+视觉Transformer进行微调,仅训练约130万个参数,并结合了大规模数据增强及处理领域异质性的域加权Focal Loss。尽管存在领域差异,我们微调后的DINOv3能有效迁移至组织病理学图像,在最终测试集上获得第一名。这些结果凸显了DINOv3预训练的优势,并证明了我们微调策略的高效性与鲁棒性,从而在MIDOG 2025非典型有丝分裂分类挑战中取得了最先进的性能。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员