Reconfigurable computing offers a good balance between flexibility and energy efficiency. When combined with software-programmable devices such as CPUs, it is possible to obtain higher performance by spatially distributing the parallelizable sections of an application throughout the reconfigurable device while the CPU is in charge of control-intensive sections. This work introduces an elastic Coarse-Grained Reconfigurable Architecture (CGRA) integrated into an energy-efficient RISC-V-based SoC designed for the embedded domain. The microarchitecture of CGRA supports conditionals and irregular loops, making it adaptable to domain-specific applications. Additionally, we propose specific mapping strategies that enable the efficient utilization of the CGRA for both simple applications, where the fabric is only reconfigured once (one-shot kernel), and more complex ones, where it is necessary to reconfigure the CGRA multiple times to complete them (multi-shot kernels). Large kernels also benefit from the independent memory nodes incorporated to streamline data accesses. Due to the integration of CGRA as an accelerator of the RISC-V processor enables a versatile and efficient framework, providing adaptability, processing capacity, and overall performance across various applications. The design has been implemented in TSMC 65 nm, achieving a maximum frequency of 250 MHz. It achieves a peak performance of 1.22 GOPs computing one-shot kernels and 1.17 GOPs computing multi-shot kernels. The best energy efficiency is 72.68 MOPs/mW for one-shot kernels and 115.96 MOPs/mW for multi-shot kernels. The design integrates power and clock-gating techniques to tailor the architecture to the embedded domain while maintaining performance. The best speed-ups are 17.63x and 18.61x for one-shot and multi-shot kernels. The best energy savings in the SoC are 9.05x and 11.10x for one-shot and multi-shot kernels.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
35+阅读 · 2021年1月27日
Arxiv
16+阅读 · 2020年2月6日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员