Knowledge graph alignment is the task of matching equivalent entities (that is, instances and classes) and relations across two knowledge graphs. Most existing methods focus on pure entity-level alignment, computing the similarity of entities in some embedding space. They lack interpretable reasoning and need training data to work. In this paper, we propose FLORA, a simple yet effective method that (1) is unsupervised, i.e., does not require training data, (2) provides a holistic alignment for entities and relations iteratively, (3) is based on fuzzy logic and thus delivers interpretable results, (4) provably converges, (5) allows dangling entities, i.e., entities without a counterpart in the other KG, and (6) achieves state-of-the-art results on major benchmarks.
翻译:知识图谱对齐任务旨在匹配两个知识图谱中等价的实体(即实例与类)及关系。现有方法大多聚焦于纯实体层面的对齐,通过在某种嵌入空间中计算实体相似度实现。这些方法缺乏可解释的推理过程,且需要训练数据才能运行。本文提出FLORA方法,该方案简洁而高效,具有以下特性:(1) 无监督性,即无需训练数据;(2) 通过迭代方式实现实体与关系的整体对齐;(3) 基于模糊逻辑框架,可提供可解释的结果;(4) 具备可证明的收敛性;(5) 支持悬空实体(即在另一知识图谱中无对应项的实体)的处理;(6) 在主流基准测试中达到最优性能。