Characterization of entropy functions is of fundamental importance in information theory. By imposing constraints on their Shannon outer bound, i.e., the polymatroidal region, one obtains the faces of the region and entropy functions on them with special structures. In this series of two papers, we characterize entropy functions on the 2-dimensional faces of the polymatroidal region of degree 4. In Part I, we formulate the problem, enumerate all 59 types of 2-dimensional faces of the region by an algorithm, and fully characterize entropy functions on 49 types of them. Among them, those non-trivial cases are mainly characterized by the graph-coloring technique. The entropy functions on the remaining 10 types of faces will be characterized in Part II, among which 8 types are fully characterized, and 2 types are partially characterized.


翻译:熵函数的刻画在信息论中具有基础性重要意义。通过对香农外边界(即多拟阵区域)施加约束,可获得该区域的各维面及其上具有特殊结构的熵函数。在本系列两篇论文中,我们刻画了四维多拟阵区域二维面上的熵函数。在第一部分中,我们构建了问题框架,通过算法枚举了该区域全部59类二维面,并完整刻画了其中49类面上的熵函数。其中非平凡情形主要借助图着色技术进行刻画。剩余10类面上的熵函数将在第二部分中完成刻画,其中8类已获完整刻画,2类获得部分刻画。

0
下载
关闭预览

相关内容

UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
【ICML2024】基于正则化的持续学习的统计理论
专知会员服务
21+阅读 · 2024年6月11日
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
23+阅读 · 2023年5月10日
【NeurIPS2022】几何知识蒸馏:图神经网络的拓扑压缩
专知会员服务
25+阅读 · 2022年11月9日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
【ICML2024】基于正则化的持续学习的统计理论
专知会员服务
21+阅读 · 2024年6月11日
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
23+阅读 · 2023年5月10日
【NeurIPS2022】几何知识蒸馏:图神经网络的拓扑压缩
专知会员服务
25+阅读 · 2022年11月9日
相关资讯
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员