Dominance is a fundamental concept in game theory. In strategic-form games dominated strategies can be identified in polynomial time. As a consequence, iterative removal of dominated strategies can be performed efficiently as a preprocessing step for reducing the size of a game before computing a Nash equilibrium. For imperfect-information games in extensive form, we could convert the game to strategic form and then iteratively remove dominated strategies in the same way; however, this conversion may cause an exponential blowup in game size. In this paper we define and study the concept of dominated actions in imperfect-information games. Our main result is a polynomial-time algorithm for determining whether an action is dominated (strictly or weakly) by any mixed strategy in n-player games, which can be extended to an algorithm for iteratively removing dominated actions. This allows us to efficiently reduce the size of the game tree as a preprocessing step for Nash equilibrium computation. We explore the role of dominated actions empirically in the "All In or Fold" No-Limit Texas Hold'em poker variant.


翻译:占优是博弈论中的一个基本概念。在策略型博弈中,占优策略可以在多项式时间内被识别。因此,在计算纳什均衡之前,可以高效地执行迭代剔除占优策略作为缩减博弈规模的预处理步骤。对于扩展型的不完全信息博弈,我们可以将博弈转换为策略型,然后以相同方式迭代剔除占优策略;然而,这种转换可能导致博弈规模呈指数级膨胀。本文定义并研究了不完全信息博弈中占优行动的概念。我们的主要成果是:针对n人博弈,提出了一个多项式时间算法,用于判定一个行动是否被任意混合策略占优(严格或弱占优),该算法可扩展为迭代剔除占优行动的算法。这使得我们能够高效地缩减博弈树规模,作为纳什均衡计算的预处理步骤。我们通过“全押或弃牌”无限注德州扑克变体,对占优角色的作用进行了实证探索。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
15+阅读 · 2022年1月24日
Arxiv
11+阅读 · 2018年4月25日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
15+阅读 · 2022年1月24日
Arxiv
11+阅读 · 2018年4月25日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员