In this work, we present novel protocols over rings for semi-honest secure three-party computation (3PC) and malicious four-party computation (4PC) with one corruption. While most existing works focus on improving total communication complexity, challenges such as network heterogeneity and computational complexity, which impact MPC performance in practice, remain underexplored. Our protocols address these issues by tolerating multiple arbitrarily weak network links between parties without any substantial decrease in performance. Additionally, they significantly reduce computational complexity by requiring up to half the number of basic instructions per gate compared to related work. These improvements lead to up to twice the throughput of state-of-the-art protocols in homogeneous network settings and up to eight times higher throughput in real-world heterogeneous settings. These advantages come at no additional cost: Our protocols maintain the best-known total communication complexity per multiplication, requiring 3 elements for 3PC and 5 elements for 4PC. We implemented our protocols alongside several state-of-the-art protocols (Replicated 3PC, ASTRA, Fantastic Four, Tetrad) in a novel open-source C++ framework optimized for high throughput. Five out of six implemented 3PC and 4PC protocols achieve more than one billion 32-bit multiplications or over 32 billion AND gates per second using our implementation in a 25 Gbit/s LAN environment. This represents the highest throughput achieved in 3PC and 4PC so far, outperforming existing frameworks like MP-SPDZ, ABY3, MPyC, and MOTION by two to three orders of magnitude.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员