Commodity multicore systems are increasingly adopting hardware support that enables the system software to partition the last-level cache (LLC). This support makes it possible for the operating system (OS) or the Virtual Machine Monitor (VMM) to mitigate shared-resource contention effects on multicores by assigning different co-running applications to various cache partitions. Recently cache-clustering (or partition-sharing) strategies have emerged as a way to improve system throughput and fairness on new platforms with cache-partitioning support. As opposed to strict cache-partitioning, which allocates separate cache partitions to each application, cache-clustering allows partitions to be shared by a group of applications. In this article we propose LFOC+, a fairness-aware OS-level cache-clustering policy for commodity multicore systems. LFOC+ tries to mimic the behavior of the optimal cache-clustering solution for fairness, which we could obtain for different workload scenarios by using a simulation tool. Our dynamic cache-clustering strategy continuously gathers data from performance monitoring counters to classify applications at runtime based on the degree of cache sensitivity and contentiousness, and effectively separates cache-sensitive applications from aggressor programs to improve fairness, while providing acceptable system throughput. We implemented LFOC+ in the Linux kernel and evaluated it on a real system featuring an Intel Skylake processor, where we compare its effectiveness to that of four previously proposed cache-clustering policies. Our experimental analysis reveals that LFOC+ constitutes a lightweight OS-level policy and improves fairness relative to two other state-of-the-art fairness-aware strategies --Dunn and LFOC--, by up to 22\% and up to 20.6\%, respectively, and by 9\% and 4.9\% on average.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员