Energy-based fragmentation methods approximate the potential energy of a molecular system as a sum of contribution terms built from the energies of particular subsystems. Some such methods reduce to truncations of the many-body expansion (MBE); others combine subsystem energies in a manner inspired by the principle of inclusion/exclusion (PIE). The combinatorial technique of M\"obius inversion of sums over partially ordered sets, which generalizes the PIE, is known to provide a non-recursive expression for the MBE contribution terms, and has also been connected to related cluster expansion methods. We build from these ideas a very general framework for decomposing potential functions into energetic contribution terms associated with elements of particular partially ordered sets (posets) and direct products thereof. Specific choices immediately reproduce not only the MBE, but also a number of other existing decomposition forms, including, e.g., the multilevel ML-BOSSANOVA schema. Furthermore, a different choice of poset product leads to a setup familiar from the combination technique for high-dimensional approximation, which has a known connection to quantum-chemical composite methods. We present the ML-SUPANOVA decomposition form, which allows the further refinement of the terms of an MBE-like expansion of the Born-Oppenheimer potential according to systematic hierarchies of ab initio methods and of basis sets. We outline an adaptive algorithm for the a posteori construction of quasi-optimal truncations of this decomposition. Some initial experiments are reported and discussed.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
10+阅读 · 2021年12月9日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
Deep Learning for Energy Markets
Arxiv
11+阅读 · 2019年4月10日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
10+阅读 · 2021年12月9日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
Deep Learning for Energy Markets
Arxiv
11+阅读 · 2019年4月10日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员