Ensuring the trustworthiness of data from distributed and resource-constrained environments, such as Wireless Sensor Networks or IoT devices, is critical. Existing Reversible Data Hiding (RDH) methods for scalar data suffer from low embedding capacity and poor intrinsic mixing between host data and watermark. This paper introduces Hiding in the Imaginary Domain with Data Encryption (H[i]dden), a novel framework based on complex number arithmetic for simultaneous information embedding and encryption. The H[i]dden framework offers perfect reversibility, in-principle unlimited watermark size, and intrinsic data-watermark mixing. The paper further introduces two protocols: H[i]dden-EG, for joint reversible data hiding and encryption, and H[i]dden-AggP, for privacy-preserving aggregation of watermarked data, based on partially homomorphic encryption. These protocols provide efficient and resilient solutions for data integrity, provenance and confidentiality, serving as a foundation for new schemes based on the algebraic properties of the complex domain.


翻译:确保来自分布式及资源受限环境(如无线传感器网络或物联网设备)数据的可信性至关重要。现有针对标量数据的可逆数据隐藏方法存在嵌入容量低、宿主数据与水印内在混合性差的问题。本文提出基于复数运算的H[i]dden框架,实现信息嵌入与加密的同步处理。该框架具备完全可逆性、理论上无限的水印容量以及数据与水印的内在混合特性。进一步提出两种协议:基于部分同态加密的H[i]dden-EG(用于可逆数据隐藏与加密的联合处理)和H[i]dden-AggP(用于水印数据的隐私保护聚合)。这些协议为数据完整性、溯源性和保密性提供了高效稳健的解决方案,为基于复数域代数特性的新型方案奠定了基础。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员