Marked temporal point processes (MTPPs) model sequences of events occurring at irregular time intervals, with wide-ranging applications in fields such as healthcare, finance and social networks. We propose the state-space point process (S2P2) model, a novel and performant model that leverages techniques derived for modern deep state-space models (SSMs) to overcome limitations of existing MTPP models, while simultaneously imbuing strong inductive biases for continuous-time event sequences that other discrete sequence models (i.e., RNNs, transformers) do not capture. Inspired by the classical linear Hawkes processes, we propose an architecture that interleaves stochastic jump differential equations with nonlinearities to create a highly expressive intensity-based MTPP model, without the need for restrictive parametric assumptions for the intensity. Our approach enables efficient training and inference with a parallel scan, bringing linear complexity and sublinear scaling while retaining expressivity to MTPPs. Empirically, S2P2 achieves state-of-the-art predictive likelihoods across eight real-world datasets, delivering an average improvement of 33% over the best existing approaches.


翻译:标记时间点过程(MTPPs)用于建模在非规则时间间隔发生的事件序列,在医疗保健、金融和社交网络等领域具有广泛的应用。我们提出了状态空间点过程(S2P2)模型,这是一种新颖且高性能的模型,它利用为现代深度状态空间模型(SSMs)开发的技术来克服现有MTPP模型的局限性,同时为连续时间事件序列注入了其他离散序列模型(即RNN、Transformer)所不具备的强大归纳偏置。受经典线性霍克斯过程的启发,我们提出了一种将随机跳跃微分方程与非线性层交错结合的架构,从而创建了一个高度表达性的基于强度的MTPP模型,无需对强度函数施加限制性的参数假设。我们的方法通过并行扫描实现了高效的训练和推理,在保持对MTPPs表达力的同时,带来了线性复杂度和亚线性扩展能力。实证结果表明,S2P2在八个真实世界数据集上实现了最先进的预测似然,相比现有最佳方法平均提升了33%。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员