Addressing the challenge of balancing security and efficiency when deploying machine learning systems in untrusted environments, such as federated learning, remains a critical concern. A promising strategy to tackle this issue involves optimizing the performance of fully homomorphic encryption (HE). Recent research highlights the efficacy of advanced caching techniques, such as Rache, in significantly enhancing the performance of HE schemes without compromising security. However, Rache is constrained by an inherent limitation: its performance overhead is heavily influenced by the characteristics of plaintext models, specifically exhibiting a caching time complexity of $\mathcal{O}(N)$, where $N$ represents the number of cached pivots based on specific radixes. This caching overhead becomes impractical for handling large-scale data. In this study, we introduce a novel \textit{constant-time} caching technique that is independent of any parameters. The core concept involves applying scalar multiplication to a single cached ciphertext, followed by the introduction of a completely new and constant-time randomness. Leveraging the inherent characteristics of constant-time construction, we coin the term ``Smuche'' for this innovative caching technique, which stands for Scalar-multiplicative Caching of Homomorphic Encryption. We implemented Smuche from scratch and conducted comparative evaluations against two baseline schemes, Rache and CKKS. Our experimental results underscore the effectiveness of Smuche in addressing the identified limitations and optimizing the performance of homomorphic encryption in practical scenarios.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员