Estimation of brain functional connectivity (FC) is essential for understanding the functional organization in the brain and for identifying changes occurring due to neurological disorders, development, treatment, and other phenomena. Independent component analysis (ICA) is a matrix decomposition method that has been used extensively for estimation of brain functional networks and their FC. However, estimation of FC via ICA is often sub-optimal due to the use of ad-hoc methods or need for temporal dimension reduction prior to traditional ICA methods. Bayesian ICA methods can avoid dimension reduction, produce more accurate estimates, and facilitate inference via posterior distributions on the model parameters. In this paper, we propose a novel, computationally efficient Bayesian ICA method with population-derived priors on both the temporal covariance, representing FC, and the spatial components of the model. We propose two algorithms for parameter estimation: a Bayesian Expectation-Maximization algorithm with a Gibbs sampler at the E-step, and a more computationally efficient variational Bayes algorithm. Through extensive simulation studies using realistic fMRI data generation mechanisms, we evaluate the performance of the proposed methods and compare them with existing approaches. Finally, we perform a comprehensive evaluation of the proposed methods using fMRI data from over 400 healthy adults in the Human Connectome Project. Our analyses demonstrate that the proposed Bayesian ICA methods produce highly accurate measures of functional connectivity and spatial brain features. The proposed framework is computationally efficient and applicable to single-subject analysis, making it potentially clinically viable.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员