Recent work on enhancing BERT-based language representation models with knowledge graphs (KGs) and knowledge bases (KBs) has yielded promising results on multiple NLP tasks. State-of-the-art approaches typically integrate the original input sentences with KG triples and feed the combined representation into a BERT model. However, as the sequence length of a BERT model is limited, such a framework supports little knowledge other than the original input sentences and is thus forced to discard some knowledge. This problem is especially severe for downstream tasks for which the input is a long paragraph or even a document, such as QA or reading comprehension tasks. We address this problem with Roof-Transformer, a model with two underlying BERTs and a fusion layer on top. One underlying BERT encodes the knowledge resources and the other one encodes the original input sentences, and the fusion layer integrates the two resultant encodings. Experimental results on a QA task and the GLUE benchmark attest the effectiveness of the proposed model.


翻译:最近,利用知识图表和知识基础(KGs)加强基于BERT的语言表述模型的工作在多项NLP任务方面取得了有希望的成果。 最先进的方法通常将原始输入句与KG三重结合,并将合并表示制纳入BERT模式。然而,由于BERT模式的顺序长度有限,这种框架除了原始输入句外,几乎没有什么知识,因此被迫放弃某些知识。对于下游任务来说,这一问题特别严重,因为投入是一个长段落,甚至是一个文件,例如QA或阅读理解任务。我们用“Roof-Transer”解决了这一问题,这是一个包含两个基本BERT和顶部一个聚合层的模型。一个基本的BERT编码了知识资源,另一个编码了原始输入句,而结合了两个结果编码。QA任务的实验结果和GLUE基准证明了拟议模型的有效性。

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
11+阅读 · 2022年3月16日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员