Click-through rate (CTR) prediction, which models behavior sequence and non-sequential features (e.g., user/item profiles or cross features) to infer user interest, underpins industrial recommender systems. However, most methods face three forms of heterogeneity that degrade predictive performance: (i) Feature Heterogeneity persists when limited sequence side features provide less granular interest representation compared to extensive non-sequential features, thereby impairing sequence modeling performance; (ii) Context Heterogeneity arises because a user's interest in an item will be influenced by other items, yet point-wise prediction neglects cross-item interaction context from the entire item set; (iii) Architecture Heterogeneity stems from the fragmented integration of specialized network modules, which compounds the model's effectiveness, efficiency and scalability in industrial deployments. To tackle the above limitations, we propose HoMer, a Homogeneous-Oriented TransforMer for modeling sequential and set-wise contexts. First, we align sequence side features with non-sequential features for accurate sequence modeling and fine-grained interest representation. Second, we shift the prediction paradigm from point-wise to set-wise, facilitating cross-item interaction in a highly parallel manner. Third, HoMer's unified encoder-decoder architecture achieves dual optimization through structural simplification and shared computation, ensuring computational efficiency while maintaining scalability with model size. Without arduous modification to the prediction pipeline, HoMer successfully scales up and outperforms our industrial baseline by 0.0099 in the AUC metric, and enhances online business metrics like CTR/RPM by 1.99%/2.46%. Additionally, HoMer saves 27% of GPU resources via preliminary engineering optimization, further validating its superiority and practicality.


翻译:点击率(CTR)预测通过建模行为序列与非序列特征(如用户/物品画像或交叉特征)来推断用户兴趣,是工业推荐系统的核心基础。然而,现有方法普遍面临三种异质性挑战,导致预测性能下降:(一)特征异质性:当有限的序列侧特征相比丰富的非序列特征无法提供足够细粒度的兴趣表征时,会削弱序列建模的性能;(二)上下文异质性:用户对某物品的兴趣会受到其他物品的影响,而逐点预测忽略了整个物品集合中的跨物品交互上下文;(三)架构异质性:现有方法通常采用碎片化的专用网络模块拼接方式,这制约了模型在工业部署中的效果、效率与可扩展性。为应对上述局限,本文提出HoMer——一种面向同质化的Transformer架构,用于统一建模序列与集合上下文。首先,我们通过对齐序列侧特征与非序列特征,实现精确的序列建模与细粒度兴趣表征。其次,我们将预测范式从逐点预测转变为集合预测,以高度并行的方式促进跨物品交互。再者,HoMer采用统一的编码器-解码器架构,通过结构简化与计算共享实现双重优化,在保证计算效率的同时维持模型规模的可扩展性。无需对预测流程进行复杂改造,HoMer成功实现规模化部署,并在AUC指标上超越工业基线0.0099,线上CTR/RPM等业务指标提升1.99%/2.46%。此外,通过前期工程优化,HoMer节省了27%的GPU资源,进一步验证了其优越性与实用性。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员