This paper introduces a novel decomposition framework to explain heterogeneity in causal effects observed across different studies, considering both observational and randomized settings. We present a formal decomposition of between-study heterogeneity, identifying sources of variability in treatment effects across studies. The proposed methodology allows for robust estimation of causal parameters under various assumptions, addressing differences in pre-treatment covariate distributions, mediating variables, and the outcome mechanism. Our approach is validated through a simulation study and applied to data from the Moving to Opportunity (MTO) study, demonstrating its practical relevance. This work contributes to the broader understanding of causal inference in multi-study environments, with potential applications in evidence synthesis and policy-making.
翻译:本文提出了一种新颖的分解框架,用于解释在不同研究中观察到的因果效应异质性,同时考虑了观察性和随机化研究设置。我们提出了研究间异质性的形式化分解,识别了跨研究处理效应变异性的来源。所提出的方法能够在各种假设下对因果参数进行稳健估计,并处理预处理协变量分布、中介变量及结果机制之间的差异。通过模拟研究验证了我们的方法,并将其应用于“迁移至机会”(MTO)研究的数据,证明了其实用价值。这项工作有助于在多研究环境中更广泛地理解因果推断,在证据综合和政策制定方面具有潜在应用价值。