Characteristics such as low contrast and significant organ shape variations are often exhibited in medical images. The improvement of segmentation performance in medical imaging is limited by the generally insufficient adaptive capabilities of existing attention mechanisms. An efficient Channel Prior Convolutional Attention (CPCA) method is proposed in this paper, supporting the dynamic distribution of attention weights in both channel and spatial dimensions. Spatial relationships are effectively extracted while preserving the channel prior by employing a multi-scale depth-wise convolutional module. The ability to focus on informative channels and important regions is possessed by CPCA. A segmentation network called CPCANet for medical image segmentation is proposed based on CPCA. CPCANet is validated on two publicly available datasets. Improved segmentation performance is achieved by CPCANet while requiring fewer computational resources through comparisons with state-of-the-art algorithms. Our code is publicly available at \url{https://github.com/Cuthbert-Huang/CPCANet}.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
W-net: Bridged U-net for 2D Medical Image Segmentation
Arxiv
20+阅读 · 2018年7月12日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员