Bayesian methods are commonly applied to solve image analysis problems such as noise-reduction, feature enhancement and object detection. A primary limitation of these approaches is the computational complexity due to the interdependence of neighboring pixels which limits the ability to perform full posterior sampling through Markov chain Monte Carlo (MCMC). To alleviate this problem, we develop a new posterior sampling method that is based on modeling the prior and likelihood in the space of the Fourier transform of the image. One advantage of Fourier-based methods is that many spatially correlated processes in image space can be represented via independent processes over Fourier space. A recent approach known as Bayesian Image Analysis in Fourier Space (or BIFS), has introduced parameter functions to describe prior expectations about image properties in Fourier space. To date BIFS has relied on Maximum a Posteriori (MAP) estimation for generating posterior estimates; providing just a single point estimate. The work presented here develops a posterior sampling approach for BIFS that can explore the full posterior distribution while continuing to take advantage of the independence modeling over Fourier space. As a result computational efficiency is improved over that for conventional Bayesian image analysis and mixing concerns that commonly have to be dealt with in high dimensional Markov chain Monte Carlo sampling problems are avoided. Implementation results and details are provided using simulated data.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2014年12月31日
Two Approaches to Supervised Image Segmentation
Arxiv
0+阅读 · 2023年7月19日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员