Cloud-native architectures are often based on microservices and combine different aspects that aim to leverage the capabilities of cloud platforms for software development. Cloud-native architectural characteristics like patterns and best practices aim to design, develop, deploy, and operate such systems efficiently with minimal time and effort. However, architects and developers are faced with the challenge of applying such characteristics in a targeted manner to improve selected quality attributes. Hence, we aim to investigate relationships, or more specifically impacts, between architectural characteristics of cloud-native applications, and quality aspects. The architectural characteristics in consideration are based on our recently proposed quality model for cloud-native software architectures. To validate its elements and revise this literature-based quality model, we conducted a questionnaire-based survey among 42 software professionals. While the survey results reinforce the quality model to a fair extent, they also indicate parts requiring a revision. Thus, as an additional contribution, we present an updated version of the quality model incorporating the survey results. Practitioners will benefit from our work when designing and developing cloud-native applications in a quality-oriented way. Researchers will moreover profit from our specifically developed questionnaire-based survey tool, which allows surveying complex structures like a hierarchical quality model.


翻译:暂无翻译

0
下载
关闭预览

相关内容

医学人工智能AIM(Artificial Intelligence in Medicine)杂志发表了多学科领域的原创文章,涉及医学中的人工智能理论和实践,以医学为导向的人类生物学和卫生保健。医学中的人工智能可以被描述为与研究、项目和应用相关的科学学科,旨在通过基于知识或数据密集型的计算机解决方案支持基于决策的医疗任务,最终支持和改善人类护理提供者的性能。 官网地址:http://dblp.uni-trier.de/db/journals/artmed/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员