Cross-encoder models, which jointly encode and score a query-item pair, are typically prohibitively expensive for k-nearest neighbor search. Consequently, k-NN search is performed not with a cross-encoder, but with a heuristic retrieve (e.g., using BM25 or dual-encoder) and re-rank approach. Recent work proposes ANNCUR (Yadav et al., 2022) which uses CUR matrix factorization to produce an embedding space for efficient vector-based search that directly approximates the cross-encoder without the need for dual-encoders. ANNCUR defines this shared query-item embedding space by scoring the test query against anchor items which are sampled uniformly at random. While this minimizes average approximation error over all items, unsuitably high approximation error on top-k items remains and leads to poor recall of top-k (and especially top-1) items. Increasing the number of anchor items is a straightforward way of improving the approximation error and hence k-NN recall of ANNCUR but at the cost of increased inference latency. In this paper, we propose a new method for adaptively choosing anchor items that minimizes the approximation error for the practically important top-k neighbors for a query with minimal computational overhead. Our proposed method incrementally selects a suitable set of anchor items for a given test query over several rounds, using anchors chosen in previous rounds to inform selection of more anchor items. Empirically, our method consistently improves k-NN recall as compared to both ANNCUR and the widely-used dual-encoder-based retrieve-and-rerank approach.


翻译:暂无翻译

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月19日
Arxiv
10+阅读 · 2021年2月26日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员