Althoughthereislittleempiricalresearchonplatform-specific performance for retail workloads, the digital transformation of the retail industry has accelerated the adoption of cloud-based Point-of-Sale (POS) systems. This paper presents a systematic, repeatable comparison of POS workload deployments on Google Cloud Platform (GCP) and Microsoft Azure using real-time API endpoints and open-source benchmarking code. Using free-tier cloud resources, we offer a transparent methodology for POS workload evaluation that small retailers and researchers can use. Our approach measures important performance metrics like response latency, throughput, and scalability while estimating operational costs based on actual resource usage and current public cloud pricing because there is no direct billing under free-tier usage. All the tables and figures in this study are generated directly from code outputs, ensuring that the experimental data and the reported results are consistent. Our analysis shows that GCP achieves 23.0% faster response times at baseline load, while Azure shows 71.9% higher cost efficiency for steady-state operations. We look at the architectural components that lead to these differences and provide a helpful framework for merchants considering cloud point-of-sale implementation. This study establishes a strong, open benchmarking methodology for retail cloud applications and offers the first comprehensive, code-driven comparison of workloads unique to point-of-sale systems across leading cloud platforms.


翻译:尽管针对零售工作负载的平台特定性能的实证研究较少,但零售业的数字化转型加速了基于云的销售点(POS)系统的采用。本文使用实时API端点和开源基准测试代码,对Google Cloud Platform(GCP)和Microsoft Azure上的POS工作负载部署进行了系统化、可重复的比较。利用免费层云资源,我们为小型零售商和研究人员提供了一种透明的POS工作负载评估方法。我们的方法测量了响应延迟、吞吐量和可扩展性等重要性能指标,同时基于实际资源使用情况和当前公有云定价估算运营成本(因为免费层使用不产生直接计费)。本研究中的所有表格和图表均直接从代码输出生成,确保了实验数据与报告结果的一致性。我们的分析表明,在基准负载下,GCP的响应时间快23.0%,而Azure在稳态运营中显示出高出71.9%的成本效益。我们研究了导致这些差异的架构组件,并为考虑实施云销售点的商家提供了一个实用的框架。本研究为零售云应用建立了一个强大、开放的基准测试方法,并首次对领先云平台上销售点系统特有的工作负载进行了全面的、代码驱动的比较。

0
下载
关闭预览

相关内容

Windows Azure是微软基于云计算的操作系统,现在更名为“Microsoft Azure”,和Azure Services Platform一样,是微软“软件和服务”技术的名称。Windows Azure的主要目标是为开发者提供一个平台,帮助开发可运行在云服务器、数据中心、Web和PC上的应用程序。云计算的开发者能使用微软全球数据中心的储存、计算能力和网络基础服务。Azure服务平台包括了以下主要组件:Windows Azure;Microsoft SQL数据库服务,Microsoft .Net服务;用于分享、储存和同步文件的Live服务;针对商业的Microsoft SharePoint和Microsoft Dynamics CRM服务。
一种Agent自主性风险评估框架 | 最新文献
专知会员服务
16+阅读 · 2025年10月24日
【NeurIPS2025】迈向开放世界的三维“物体性”学习
专知会员服务
11+阅读 · 2025年10月21日
DeepSeek模型综述:V1 V2 V3 R1-Zero
专知会员服务
116+阅读 · 2025年2月11日
NLG任务评价指标BLEU与ROUGE
AINLP
21+阅读 · 2020年5月25日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
在TensorFlow中对比两大生成模型:VAE与GAN
机器之心
12+阅读 · 2017年10月23日
大数据分析研究组开源Easy Machine Learning系统
中国科学院网络数据重点实验室
17+阅读 · 2017年6月13日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
NLG任务评价指标BLEU与ROUGE
AINLP
21+阅读 · 2020年5月25日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
在TensorFlow中对比两大生成模型:VAE与GAN
机器之心
12+阅读 · 2017年10月23日
大数据分析研究组开源Easy Machine Learning系统
中国科学院网络数据重点实验室
17+阅读 · 2017年6月13日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员