Over a decade ago, it was demonstrated that quantum computing has the potential to revolutionize numerical linear algebra by enabling algorithms with complexity superior to what is classically achievable, e.g., the seminal HHL algorithm for solving linear systems. Efficient execution of such algorithms critically depends on representing inputs (matrices and vectors) as quantum circuits that encode or implement these inputs. For that task, two common circuit representations emerged in the literature: block encodings and state preparation circuits. In this paper, we systematically study encodings matrices in the form of block encodings and state preparation circuits. We examine methods for constructing these representations from matrices given in classical form, as well as quantum two-way conversions between circuit representations. Two key results we establish (among others) are: (a) a general method for efficiently constructing a block encoding of an arbitrary matrix given in classical form (entries stored in classical random access memory); and (b) low-overhead, bidirectional conversion algorithms between block encodings and state preparation circuits, showing that these models are essentially equivalent. From a technical perspective, two central components of our constructions are: (i) a special constant-depth multiplexer that simultaneously multiplexes all higher-order Pauli matrices of a given size, and (ii) an algorithm for performing a quantum conversion between a matrix's expansion in the standard basis and its expansion in the basis of higher-order Pauli matrices.


翻译:十多年前的研究表明,量子计算有望通过实现复杂度超越经典极限的算法(例如求解线性系统的开创性HHL算法)彻底革新数值线性代数领域。此类算法的高效执行关键取决于将输入(矩阵与向量)表示为能编码或实现这些输入的量子电路。为此,文献中形成了两种主流的电路表示形式:块编码与态制备电路。本文系统研究了以块编码和态制备电路形式实现的矩阵编码方法。我们探讨了从经典形式给出的矩阵构建这些表示的方法,以及不同电路表示之间的量子双向转换技术。我们建立的两个关键成果(及其他成果)包括:(a)为经典形式给出的任意矩阵(条目存储于经典随机存取存储器)高效构建块编码的通用方法;(b)块编码与态制备电路之间的低开销双向转换算法,证明这两种模型本质上是等价的。从技术视角看,我们构建方案的两个核心组件是:(i)能同时复用给定尺寸所有高阶泡利矩阵的特殊常数深度多路复用器;(ii)实现矩阵在标准基展开式与高阶泡利矩阵基展开式之间量子转换的算法。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Adaptive Synthetic Characters for Military Training
Arxiv
50+阅读 · 2021年1月6日
Reasoning on Knowledge Graphs with Debate Dynamics
Arxiv
14+阅读 · 2020年1月2日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Arxiv
20+阅读 · 2018年1月17日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Adaptive Synthetic Characters for Military Training
Arxiv
50+阅读 · 2021年1月6日
Reasoning on Knowledge Graphs with Debate Dynamics
Arxiv
14+阅读 · 2020年1月2日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Arxiv
20+阅读 · 2018年1月17日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员