Objective: Function is increasingly recognized as an important indicator of whole-person health. This study evaluates the ability of publicly available large language models (LLMs) to accurately identify the presence of functioning information from clinical notes. We explore various strategies to improve the performance on this task. Materials and Methods: We collect a balanced binary classification dataset of 1000 sentences from the Mobility NER dataset, which was curated from n2c2 clinical notes. For evaluation, we construct zero-shot and few-shot prompts to query the LLMs whether a given sentence contains mobility functioning information. Two sampling techniques, random sampling and k-nearest neighbor (kNN)-based sampling, are used to select the few-shot examples. Furthermore, we apply a parameter-efficient prompt-based fine-tuning method to the LLMs and evaluate their performance under various training settings. Results: Flan-T5-xxl outperforms all other models in both zero-shot and few-shot settings, achieving a F1 score of 0.865 with a single demonstrative example selected by kNN sampling. In prompt-based fine-tuning experiments, this foundation model also demonstrates superior performance across all low-resource settings, particularly achieving an impressive F1 score of 0.922 using the full training dataset. The smaller model, Flan-T5-xl, requires fine-tuning with only 2.3M additional parameters to achieve comparable performance to the fully fine-tuned Gatortron-base model, both surpassing 0.9 F1 score. Conclusion: Open-source instruction-tuned LLMs demonstrate impressive in-context learning capability in the mobility functioning classification task. The performance of these models can be further improved by continuing fine-tuning on a task-specific dataset.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员