Risk-sensitive reinforcement learning (RL) has become a popular tool for controlling the risk of uncertain outcomes and ensuring reliable performance in highly stochastic sequential decision-making problems. While Policy Gradient (PG) methods have been developed for risk-sensitive RL, it remains unclear if these methods enjoy the same global convergence guarantees as in the risk-neutral case \citep{mei2020global,agarwal2021theory,cen2022fast,bhandari2024global}. In this paper, we consider a class of dynamic time-consistent risk measures, named Expected Conditional Risk Measures (ECRMs), and derive PG and Natural Policy Gradient (NPG) updates for ECRMs-based RL problems. We provide global optimality {and iteration complexities} of the proposed algorithms under the following four settings: (i) PG with constrained direct parameterization, (ii) PG with softmax parameterization and log barrier regularization, (iii) NPG with softmax parameterization and entropy regularization, and (iv) approximate NPG with inexact policy evaluation. Furthermore, we test a risk-averse REINFORCE algorithm \citep{williams1992simple} and a risk-averse NPG algorithm \citep{kakade2001natural} on a stochastic Cliffwalk environment to demonstrate the efficacy of our methods and the importance of risk control.


翻译:风险敏感强化学习已成为控制不确定结果风险、确保高度随机序贯决策问题中性能可靠性的流行工具。尽管已针对风险敏感强化学习开发了策略梯度方法,但这些方法是否享有与风险中性情况相同的全局收敛保证仍不明确 \citep{mei2020global,agarwal2021theory,cen2022fast,bhandari2024global}。本文研究一类动态时间一致性风险度量——期望条件风险度量,并针对基于ECRMs的强化学习问题推导了策略梯度与自然策略梯度更新规则。我们在以下四种设定下给出了所提出算法的全局最优性及迭代复杂度分析:(i) 采用约束直接参数化的策略梯度方法,(ii) 采用softmax参数化与对数障碍正则化的策略梯度方法,(iii) 采用softmax参数化与熵正则化的自然策略梯度方法,(iv) 采用不精确策略评估的近似自然策略梯度方法。此外,我们在随机悬崖行走环境中测试了风险规避REINFORCE算法 \citep{williams1992simple} 与风险规避自然策略梯度算法 \citep{kakade2001natural},以验证方法的有效性并展示风险控制的重要性。

0
下载
关闭预览

相关内容

Pacific Graphics是亚洲图形协会的旗舰会议。作为一个非常成功的会议系列,太平洋图形公司为太平洋沿岸以及世界各地的研究人员,开发人员,从业人员提供了一个高级论坛,以介绍和讨论计算机图形学及相关领域的新问题,解决方案和技术。太平洋图形会议的目的是召集来自各个领域的研究人员,以展示他们的最新成果,开展合作并为研究领域的发展做出贡献。会议将包括定期的论文讨论会,进行中的讨论会,教程以及由与计算机图形学和交互系统相关的所有领域的国际知名演讲者的演讲。 官网地址:http://dblp.uni-trier.de/db/conf/pg/index.html
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员