Independent component selection (ICS), introduced by Tyler et al. (2009, JRSS B), is a powerful tool to find potentially interesting projections of multivariate data. In some cases, some of the projections proposed by ICS come close to really interesting ones, but little deviations can result in a blurred view which does not reveal the feature (e.g. a clustering) which would otherwise be clearly visible. To remedy this problem, we propose an automated and localized version of projection pursuit (PP), cf. Huber (1985, Ann. Statist.}. Precisely, our local search is based on gradient descent applied to estimated differential entropy as a function of the projection matrix.


翻译:Tyler等人(2009年,JRSS B)提出的独立组成部分选择(ICS)是找到对多种变式数据的潜在有趣预测的有力工具,在某些情况下,ICS提出的一些预测接近于真正有趣的预测,但几乎没有偏差会导致一种模糊的视角,无法揭示否则会明显可见的特征(如集群),为解决这一问题,我们建议采用自动和本地化的投影追踪版本(PPP),参考Huber(1985年,Ann. Statist.}。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年12月18日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月14日
VIP会员
相关VIP内容
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员