Model substructure learning aims to find an invariant network substructure that can have better out-of-distribution (OOD) generalization than the original full structure. Existing works usually search the invariant substructure using modular risk minimization (MRM) with fully exposed out-domain data, which may bring about two drawbacks: 1) Unfairness, due to the dependence of the full exposure of out-domain data; and 2) Sub-optimal OOD generalization, due to the equally feature-untargeted pruning on the whole data distribution. Based on the idea that in-distribution (ID) data with spurious features may have a lower experience risk, in this paper, we propose a novel Spurious Feature-targeted model Pruning framework, dubbed SFP, to automatically explore invariant substructures without referring to the above drawbacks. Specifically, SFP identifies spurious features within ID instances during training using our theoretically verified task loss, upon which, SFP attenuates the corresponding feature projections in model space to achieve the so-called spurious feature-targeted pruning. This is typically done by removing network branches with strong dependencies on identified spurious features, thus SFP can push the model learning toward invariant features and pull that out of spurious features and devise optimal OOD generalization. Moreover, we also conduct detailed theoretical analysis to provide the rationality guarantee and a proof framework for OOD structures via model sparsity, and for the first time, reveal how a highly biased data distribution affects the model's OOD generalization. Experiments on various OOD datasets show that SFP can significantly outperform both structure-based and non-structure-based OOD generalization SOTAs, with accuracy improvement up to 4.72% and 23.35%, respectively


翻译:暂无翻译

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年7月5日
Arxiv
14+阅读 · 2022年5月6日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
38+阅读 · 2021年8月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关论文
Arxiv
0+阅读 · 2023年7月5日
Arxiv
14+阅读 · 2022年5月6日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
38+阅读 · 2021年8月31日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员