In this paper, we present an inverse-free pure quantum state estimation protocol that achieves Heisenberg scaling. Specifically, let $\mathcal{H}\cong \mathbb{C}^d$ be a $d$-dimensional Hilbert space with an orthonormal basis $\{|1\rangle,\ldots,|d\rangle\}$ and $U$ be an unknown unitary on $\mathcal{H}$. Our protocol estimates $U|d\rangle$ to within trace distance error $\varepsilon$ using $O(\min\{d^{3/2}/\varepsilon,d/\varepsilon^2\})$ forward queries to $U$. This complements the previous result $O(d\log(d)/\varepsilon)$ by van Apeldoorn, Cornelissen, Gily\'en, and Nannicini (SODA 2023), which requires both forward and inverse queries. Moreover, our result implies a query upper bound $O(\min\{d^{3/2}/\varepsilon,1/\varepsilon^2\})$ for inverse-free amplitude estimation, improving the previous best upper bound $O(\min\{d^{2}/\varepsilon,1/\varepsilon^2\})$ based on optimal unitary estimation by Haah, Kothari, O'Donnell, and Tang (FOCS 2023), and disproving a conjecture posed in Tang and Wright (2025).


翻译:本文提出了一种无逆查询的纯量子态估计协议,该协议实现了海森堡标度。具体而言,设 $\mathcal{H}\cong \mathbb{C}^d$ 为一个 $d$ 维希尔伯特空间,其具有标准正交基 $\{|1\rangle,\ldots,|d\rangle\}$,且 $U$ 为 $\mathcal{H}$ 上的未知酉算子。我们的协议以 $O(\min\{d^{3/2}/\varepsilon,d/\varepsilon^2\})$ 次对 $U$ 的正向查询为代价,将 $U|d\rangle$ 估计至迹距离误差 $\varepsilon$ 以内。这补充了 van Apeldoorn、Cornelissen、Gilyén 和 Nannicini(SODA 2023)先前的结果 $O(d\log(d)/\varepsilon)$,该结果要求同时进行正向和逆向查询。此外,我们的结果暗示了无逆查询幅度估计的查询上界为 $O(\min\{d^{3/2}/\varepsilon,1/\varepsilon^2\})$,改进了基于 Haah、Kothari、O'Donnell 和 Tang(FOCS 2023)最优酉估计的先前最佳上界 $O(\min\{d^{2}/\varepsilon,1/\varepsilon^2\})$,并推翻了 Tang 和 Wright(2025)提出的一个猜想。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
21+阅读 · 2019年3月25日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员