Recommender systems (RecSys) have become critical tools for enhancing user engagement by delivering personalized content across diverse digital platforms. Recent advancements in large language models (LLMs) demonstrate significant potential for improving RecSys, primarily due to their exceptional generalization capabilities and sophisticated contextual understanding, which facilitate the generation of flexible and interpretable recommendations. However, the direct deployment of LLMs as primary recommendation policies presents notable challenges, including persistent latency issues stemming from frequent API calls and inherent model limitations such as hallucinations and biases. To address these issues, this paper proposes a novel offline reinforcement learning (RL) framework that leverages imitation learning from LLM-generated trajectories. Specifically, inverse reinforcement learning is employed to extract robust reward models from LLM demonstrations. This approach negates the need for LLM fine-tuning, thereby substantially reducing computational overhead. Simultaneously, the RL policy is guided by the cumulative rewards derived from these demonstrations, effectively transferring the semantic insights captured by the LLM. Comprehensive experiments conducted on two benchmark datasets validate the effectiveness of the proposed method, demonstrating superior performance when compared against state-of-the-art RL-based and in-context learning baselines. The code can be found at https://github.com/ArronDZhang/IL-Rec.


翻译:推荐系统(RecSys)已成为提升用户参与度的关键工具,通过在多样化数字平台中提供个性化内容。大型语言模型(LLM)的最新进展显示出改进推荐系统的巨大潜力,这主要归功于其卓越的泛化能力和复杂的上下文理解,有助于生成灵活且可解释的推荐。然而,直接将LLM作为主要推荐策略部署存在显著挑战,包括频繁API调用导致的持续延迟问题,以及模型固有的幻觉和偏见等局限性。为解决这些问题,本文提出一种新颖的离线强化学习(RL)框架,该框架利用从LLM生成轨迹中进行的模仿学习。具体而言,采用逆强化学习从LLM示范中提取稳健的奖励模型。这种方法无需对LLM进行微调,从而大幅降低计算开销。同时,RL策略受到这些示范所衍生的累积奖励的引导,有效传递了LLM捕获的语义洞察。在两个基准数据集上进行的全面实验验证了所提方法的有效性,相较于最先进的基于RL和上下文学习的基线方法,其表现出更优的性能。代码可在https://github.com/ArronDZhang/IL-Rec获取。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员