Low-latency communication plays an increasingly important role in delay-sensitive applications by ensuring the real-time exchange of information. However, due to the constraints on the maximum instantaneous power, bounded latency is hard to be guaranteed. In this paper, we investigate the reliability-latency-rate tradeoff in low-latency communications with finite-blocklength coding (FBC). More specifically, we are interested in the fundamental tradeoff between error probability, delay-violation probability (DVP), and service rate. Based on the effective capacity (EC) and normal approximation, we present several gain-conservation inequalities to bound the reliability-latency-rate tradeoffs. In particular, we investigate the low-latency transmissions over an additive white Gaussian noise (AWGN) channel, over a Rayleigh fading channel, with frequency or spatial diversity, and over a Nakagami-$m$ fading channel. To analytically evaluate the quality-of-service-constrained low-latency communications with FBC, an EC-approximation method is further conceived to derive the closed-form expression of quality-of-service-constrained throughput. For delay-sensitive transmissions in which the latency threshold is greater than the channel coherence time, we find an asymptotic form of the tradeoff between the error probability and DVP over the AWGN and Rayleigh fading channels. Our results may provide some insights into the efficient scheduling of low-latency wireless communications in which statistical latency and reliability metrics are adopted.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员