Despite the success of Reinforcement Learning from Human Feedback (RLHF) in aligning language models with human values, reward hacking-or reward over-optimization-remains a major challenge. We identify two key obstacles to its mitigation: (1) reward misgeneralization in reward modeling, where reward models overfit to spurious, preference-irrelevant features; and (2) the lack of suitable regularization during RL optimization, as existing token-level constraints often over-restrict the policy space. To address these issues, we propose InfoRM, an information-theoretic reward modeling framework based on the Information Bottleneck (IB) principle, which filters out preference-irrelevant information to alleviate reward misgeneralization. We further observe that reward-hacked responses manifest as pronounced outliers in InfoRM's IB latent space, measured by Mahalanobis distance from the SFT-induced distribution. Motivated by this, we introduce IBL, a distribution-level regularization that penalizes such deviations, effectively expanding the optimization landscape while maintaining alignment. We prove that IBL is theoretically equivalent to the pessimistic RL objective within the IB latent space. Finally, we present Mahalanobis Outlier Probability (MOP), a statistical metric for quantifying reward hacking severity, enabling principled hyperparameter tuning and online mitigation such as early stopping. Extensive experiments across diverse LLMs and datasets confirm the generality of our findings, the effectiveness of InfoRM and IBL, and the reliability of MOP as a diagnostic tool-collectively advancing the state of RLHF.


翻译:尽管基于人类反馈的强化学习(RLHF)在使语言模型与人类价值观对齐方面取得了成功,但奖励破解(或称奖励过优化)仍然是主要挑战。我们识别出缓解该问题的两个关键障碍:(1)奖励建模中的奖励误泛化,即奖励模型过度拟合虚假的、与偏好无关的特征;(2)RL优化过程中缺乏合适的正则化,因为现有的词元级约束往往过度限制策略空间。为解决这些问题,我们提出InfoRM——一个基于信息瓶颈(IB)原理的信息论奖励建模框架,通过过滤偏好无关信息来缓解奖励误泛化。我们进一步观察到,奖励破解的响应在InfoRM的IB潜在空间中表现为显著的异常值,可通过其与SFT诱导分布的马氏距离进行度量。受此启发,我们引入IBL——一种分布级正则化方法,通过惩罚此类偏离有效扩展优化空间同时保持对齐性。我们证明IBL在理论上等价于IB潜在空间内的悲观RL目标。最后,我们提出马氏异常概率(MOP)这一统计度量指标,用于量化奖励破解的严重程度,从而实现基于原则的超参数调优和在线缓解(如早停策略)。在多种大语言模型和数据集上的大量实验证实了我们发现的普适性、InfoRM与IBL的有效性,以及MOP作为诊断工具的可靠性——这些成果共同推动了RLHF领域的发展。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员