This paper presents a comprehensive algorithm for fitting generative models whose likelihood, moments, and other quantities typically used for inference are not analytically or numerically tractable. The proposed method aims to provide a general solution that requires only limited prior information on the model parameters. The algorithm combines a global search phase, aimed at identifying the region of the solution, with a local search phase that mimics a trust region version of the Fisher scoring algorithm for computing a quasi-likelihood estimator. Comparisons with alternative methods demonstrate the strong performance of the proposed approach. An R package implementing the algorithm is available on CRAN.


翻译:本文提出了一种用于拟合生成模型的综合算法,该类模型的似然函数、矩以及其他通常用于推断的量在解析或数值上均难以处理。所提方法旨在提供一种通用解决方案,仅需对模型参数具备有限的先验信息。该算法将全局搜索阶段与局部搜索阶段相结合:全局搜索旨在确定解的区域,局部搜索则模拟费希尔评分算法的信赖域版本,以计算拟似然估计量。与替代方法的比较表明,所提方法具有优越性能。实现该算法的R软件包已在CRAN平台发布。

0
下载
关闭预览

相关内容

互联网
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
23+阅读 · 2023年5月10日
【ICLR2022】GNN-LM基于全局信息的图神经网络语义理解模型
专知会员服务
15+阅读 · 2021年8月29日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
Spark机器学习:矩阵及推荐算法
LibRec智能推荐
16+阅读 · 2017年8月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2025年12月31日
VIP会员
相关资讯
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
Spark机器学习:矩阵及推荐算法
LibRec智能推荐
16+阅读 · 2017年8月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员