We describe several families of efficiently implementable Boolean functions achieving provable trade-offs between resiliency, nonlinearity, and algebraic immunity. In particular, the following statement holds for each of the function families that we propose. Given integers $m_0\geq 0$, $x_0\geq 1$, and $a_0\geq 1$, it is possible to construct an $n$-variable function which has resiliency at least $m_0$, linear bias (which is an equivalent method of expressing nonlinearity) at most $2^{-x_0}$ and algebraic immunity at least $a_0$; further, $n$ is linear in $\max(m_0,x_0,a_0)$, and the function can be implemented using $O(n)$ 2-input gates, which is essentially optimal.
翻译:我们描述了几类高效可实现的布尔函数族,这些函数族在弹性、非线性度和代数免疫之间实现了可证明的折中关系。特别地,对于我们提出的每一类函数族,以下命题均成立:给定整数 $m_0\geq 0$、$x_0\geq 1$ 和 $a_0\geq 1$,可以构造一个 $n$ 元布尔函数,其弹性至少为 $m_0$,线性偏置(这是非线性度的等价表达方式)至多为 $2^{-x_0}$,且代数免疫至少为 $a_0$;此外,$n$ 与 $\max(m_0,x_0,a_0)$ 呈线性关系,且该函数可用 $O(n)$ 个二输入门实现,这本质上是最优的。