Randomized iterative algorithms for solving a factorized linear system, $\mathbf A\mathbf B\mathbf x=\mathbf b$ with $\mathbf A\in{\mathbb{R}}^{m\times \ell}$, $\mathbf B\in{\mathbb{R}}^{\ell\times n}$, and $\mathbf b\in{\mathbb{R}}^m$, have recently been proposed. They take advantage of the factorized form and avoid forming the matrix $\mathbf C=\mathbf A\mathbf B$ explicitly. However, they can only find the minimum norm (least squares) solution. In contrast, the regularized randomized Kaczmarz (RRK) algorithm can find solutions with certain structures from consistent linear systems. In this work, by combining the randomized Kaczmarz algorithm or the randomized Gauss--Seidel algorithm with the RRK algorithm, we propose two novel regularized randomized iterative algorithms to find (least squares) solutions with certain structures of $\mathbf A\mathbf B\mathbf x=\mathbf b$. We prove linear convergence of the new algorithms. Computed examples are given to illustrate that the new algorithms can find sparse (least squares) solutions of $\mathbf A\mathbf B\mathbf x=\mathbf b$ and can be better than the existing randomized iterative algorithms for the corresponding full linear system $\mathbf C\mathbf x=\mathbf b$ with $\mathbf C=\mathbf A\mathbf B$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

牛津大学最新《计算代数拓扑》笔记书,107页pdf
专知会员服务
44+阅读 · 2022年2月17日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年9月14日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员