Gaussian mixture models are widely used to model data generated from multiple latent sources. Despite its popularity, most theoretical research assumes that the labels are either independent and identically distributed, or follows a Markov chain. It remains unclear how the fundamental limits of estimation change under more complex dependence. In this paper, we address this question for the spherical two-component Gaussian mixture model. We first show that for labels with an arbitrary dependence, a naive estimator based on the misspecified likelihood is $\sqrt{n}$-consistent. Additionally, under labels that follow an Ising model, we establish the information theoretic limitations for estimation, and discover an interesting phase transition as dependence becomes stronger. When the dependence is smaller than a threshold, the optimal estimator and its limiting variance exactly matches the independent case, for a wide class of Ising models. On the other hand, under stronger dependence, estimation becomes easier and the naive estimator is no longer optimal. Hence, we propose an alternative estimator based on the variational approximation of the likelihood, and argue its optimality under a specific Ising model.


翻译:高斯混合模型广泛用于建模来自多个潜在源生成的数据。尽管其应用广泛,但大多数理论研究假设标签要么独立同分布,要么遵循马尔可夫链。在更复杂的依赖关系下,估计的基本极限如何变化仍不清楚。本文针对球形双分量高斯混合模型探讨了这一问题。我们首先证明,对于具有任意依赖关系的标签,基于误设似然的朴素估计量具有$\sqrt{n}$一致性。此外,在标签遵循伊辛模型的情况下,我们建立了估计的信息理论极限,并发现了随着依赖性增强而出现的相变现象。当依赖性低于阈值时,对于一大类伊辛模型,最优估计量及其极限方差与独立情况完全一致。另一方面,在更强依赖性下,估计变得更容易且朴素估计量不再最优。因此,我们提出了一种基于似然变分近似的替代估计量,并论证了其在特定伊辛模型下的最优性。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VLP: A Survey on Vision-Language Pre-training
Arxiv
11+阅读 · 2022年2月21日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Reasoning on Knowledge Graphs with Debate Dynamics
Arxiv
14+阅读 · 2020年1月2日
Arxiv
21+阅读 · 2019年3月25日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关论文
VLP: A Survey on Vision-Language Pre-training
Arxiv
11+阅读 · 2022年2月21日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Reasoning on Knowledge Graphs with Debate Dynamics
Arxiv
14+阅读 · 2020年1月2日
Arxiv
21+阅读 · 2019年3月25日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员