This work develops a rigorous framework for diffusion-based generative modeling in the setting of free probability. We extend classical denoising diffusion probabilistic models to free diffusion processes -- stochastic dynamics acting on noncommutative random variables whose spectral measures evolve by free additive convolution. The forward dynamics satisfy a free Fokker--Planck equation that increases Voiculescu's free entropy and dissipates free Fisher information, providing a noncommutative analogue of the classical de Bruijn identity. Using tools from free stochastic analysis, including a free Malliavin calculus and a Clark--Ocone representation, we derive the reverse-time stochastic differential equation driven by the conjugate variable, the free analogue of the score function. We further develop a variational formulation of these flows in the free Wasserstein space, showing that the resulting gradient-flow structure converges to the semicircular equilibrium law. Together, these results connect modern diffusion models with the information geometry of free entropy and establish a mathematical foundation for generative modeling with operator-valued or high-dimensional structured data.


翻译:本研究在自由概率框架下为基于扩散的生成建模建立了严格的理论体系。我们将经典去噪扩散概率模型推广至自由扩散过程——作用于非交换随机变量的随机动力学,其谱测度通过自由加性卷积演化。正向动力学满足自由福克-普朗克方程,该方程增加Voiculescu自由熵并耗散自由费希尔信息,为经典德布鲁因恒等式提供了非交换类比。利用自由随机分析工具(包括自由Malliavin微积分和Clark-Ocone表示),我们推导出由共轭变量驱动的逆时随机微分方程,该方程对应经典得分函数的自由类比。我们进一步在自由Wasserstein空间中建立了这些流的变分形式,证明所得梯度流结构收敛于半圆平衡律。这些结果共同将现代扩散模型与自由熵的信息几何相联系,并为算子值或高维结构化数据的生成建模奠定了数学基础。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员