We consider the massively parallel computation (MPC) model, which is a theoretical abstraction of large-scale parallel processing models such as MapReduce. In this model, assuming the widely believed 1-vs-2-cycles conjecture, solving many basic graph problems in $O(1)$ rounds with a strongly sublinear memory size per machine is impossible. We improve on the recent work of Holm and T\v{e}tek [SODA 2023] that bypass this barrier for problems when a planar embedding of the graph is given. In the previous work, on graphs of size $n$ with $O(n/\mathcal{S})$ machines, the memory size per machine needs to be at least $\mathcal{S} = n^{2/3+\Omega(1)}$, whereas we extend their work to the fully scalable regime, where the memory size per machine can be $\mathcal{S} = n^{\delta}$ for any constant $0< \delta < 1$. We give the first constant round fully scalable algorithms for embedded planar graphs for the problems of (i) connectivity and (ii) minimum spanning tree (MST). Moreover, we show that the $\varepsilon$-emulator of Chang, Krauthgamer, and Tan [STOC 2022] can be incorporated into our recursive framework to obtain constant-round $(1+\varepsilon)$-approximation algorithms for the problems of computing (iii) single source shortest path (SSSP), (iv) global min-cut, and (v) $st$-max flow. All previous results on cuts and flows required linear memory in the MPC model. Furthermore, our results give new algorithms for problems that implicitly involve embedded planar graphs. We give as corollaries constant round fully scalable algorithms for (vi) 2D Euclidean MST using $O(n)$ total memory and (vii) $(1+\varepsilon)$-approximate weighted edit distance using $\widetilde{O}(n^{2-\delta})$ memory. Our main technique is a recursive framework combined with novel graph drawing algorithms to compute smaller embedded planar graphs in constant rounds in the fully scalable setting.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年12月15日
Arxiv
0+阅读 · 2023年12月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员