Graph Transformer has recently received wide attention in the research community with its outstanding performance, yet its structural expressive power has not been well analyzed. Inspired by the connections between Weisfeiler-Lehman (WL) graph isomorphism test and graph neural network (GNN), we introduce \textbf{SEG-WL test} (\textbf{S}tructural \textbf{E}ncoding enhanced \textbf{G}lobal \textbf{W}eisfeiler-\textbf{L}ehman test), a generalized graph isomorphism test algorithm as a powerful theoretical tool for exploring the structural discriminative power of graph Transformers. We theoretically prove that the SEG-WL test is an expressivity upper bound on a wide range of graph Transformers, and the representational power of SEG-WL test can be approximated by a simple Transformer network arbitrarily under certain conditions. With the SEG-WL test, we show how graph Transformers' expressive power is determined by the design of structural encodings, and present conditions that make the expressivity of graph Transformers beyond WL test and GNNs. Moreover, motivated by the popular shortest path distance encoding, we follow the theory-oriented principles and develop a provably stronger structural encoding method, Shortest Path Induced Subgraph (\textit{SPIS}) encoding. Our theoretical findings provide a novel and practical paradigm for investigating the expressive power of graph Transformers, and extensive synthetic and real-world experiments empirically verify the strengths of our proposed methods.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关论文
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
23+阅读 · 2018年10月1日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员