This chapter presents a comprehensive taxonomy for assessing data quality in the context of data monetisation, developed through a systematic literature review. Organising over one hundred metrics and Key Performance Indicators (KPIs) into four subclusters (Fundamental, Contextual, Resolution, and Specialised) within the Balanced Scorecard (BSC) framework, the taxonomy integrates both universal and domain-specific quality dimensions. By positioning data quality as a strategic connector across the BSC's Financial, Customer, Internal Processes, and Learning & Growth perspectives, it demonstrates how quality metrics underpin valuation accuracy, customer trust, operational efficiency, and innovation capacity. The framework's interconnected "metrics layer" ensures that improvements in one dimension cascade into others, maximising strategic impact. This holistic approach bridges the gap between granular technical assessment and high-level decision-making, offering practitioners, data stewards, and strategists a scalable, evidence-based reference for aligning data quality management with sustainable value creation.


翻译:本章通过系统性文献综述,提出了一套用于评估数据货币化背景下数据质量的综合分类法。该分类法将一百余项指标与关键绩效指标(KPIs)整合至平衡计分卡(BSC)框架内的四个子集群(基础性、情境性、解析性与专业性),涵盖了通用性与领域特定的质量维度。通过将数据质量定位为连接BSC财务、客户、内部流程及学习与成长四大战略视角的纽带,本框架揭示了质量指标如何支撑估值准确性、客户信任、运营效率与创新能力。其相互关联的“指标层”确保单一维度的改进能联动影响其他维度,从而最大化战略效益。这一整体性方法弥合了细粒度技术评估与高层决策之间的鸿沟,为从业者、数据管理者及战略制定者提供了可扩展的、基于证据的参考框架,以推动数据质量管理与可持续价值创造的协同发展。

0
下载
关闭预览

相关内容

分类学是分类的实践和科学。Wikipedia类别说明了一种分类法,可以通过自动方式提取Wikipedia类别的完整分类法。截至2009年,已经证明,可以使用人工构建的分类法(例如像WordNet这样的计算词典的分类法)来改进和重组Wikipedia类别分类法。 从广义上讲,分类法还适用于除父子层次结构以外的关系方案,例如网络结构。然后分类法可能包括有多父母的单身孩子,例如,“汽车”可能与父母双方一起出现“车辆”和“钢结构”;但是对某些人而言,这仅意味着“汽车”是几种不同分类法的一部分。分类法也可能只是将事物组织成组,或者是按字母顺序排列的列表;但是在这里,术语词汇更合适。在知识管理中的当前用法中,分类法被认为比本体论窄,因为本体论应用了各种各样的关系类型。 在数学上,分层分类法是给定对象集的分类树结构。该结构的顶部是适用于所有对象的单个分类,即根节点。此根下的节点是更具体的分类,适用于总分类对象集的子集。推理的进展从一般到更具体。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2021年7月26日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员