Recent advances in 3D Gaussian Splatting (3D-GS) have shown remarkable success in representing 3D scenes and generating high-quality, novel views in real-time. However, 3D-GS and its variants assume that input images are captured based on pinhole imaging and are fully in focus. This assumption limits their applicability, as real-world images often feature shallow depth-of-field (DoF). In this paper, we introduce DoF-Gaussian, a controllable depth-of-field method for 3D-GS. We develop a lens-based imaging model based on geometric optics principles to control DoF effects. To ensure accurate scene geometry, we incorporate depth priors adjusted per scene, and we apply defocus-to-focus adaptation to minimize the gap in the circle of confusion. We also introduce a synthetic dataset to assess refocusing capabilities and the model's ability to learn precise lens parameters. Our framework is customizable and supports various interactive applications. Extensive experiments confirm the effectiveness of our method. Our project is available at https://dof-gaussian.github.io.


翻译:近期,3D高斯溅射(3D-GS)在三维场景表示与实时高质量新视角生成方面取得了显著成功。然而,3D-GS及其变体均假设输入图像基于针孔成像模型且完全对焦。这一假设限制了其应用范围,因为真实世界图像常呈现浅景深(DoF)效果。本文提出DoF-Gaussian——一种面向3D-GS的可控景深方法。我们基于几何光学原理构建了镜头成像模型以实现景深效果调控。为确保精确的场景几何结构,我们引入了按场景调整的深度先验,并采用散焦至聚焦自适应策略以弥合弥散圆差异。此外,我们构建了合成数据集以评估重对焦能力及模型学习精确镜头参数的性能。本框架具备高度可定制性,支持多种交互式应用。大量实验验证了本方法的有效性。项目地址:https://dof-gaussian.github.io。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员