We show that Generative Adversarial Networks (GANs) may be fruitfully exploited to learn stochastic dynamics, surrogating traditional models while capturing thermal fluctuations. Specifically, we showcase the application to a two-dimensional, many-particle system, focusing on surface-step fluctuations and on the related time-dependent roughness. After the construction of a dataset based on Kinetic Monte Carlo simulations, a conditional GAN is trained to propagate stochastically the state of the system in time, allowing the generation of new sequences with a reduced computational cost. Modifications with respect to standard GANs, which facilitate convergence and increase accuracy, are discussed. The trained network is demonstrated to quantitatively reproduce equilibrium and kinetic properties, including scaling laws, with deviations of a few percent from the exact value. Extrapolation limits and future perspectives are critically discussed.


翻译:本文证明,生成对抗网络(GANs)可有效用于学习随机动力学,在捕捉热涨落的同时替代传统模型。具体而言,我们展示了该方法在二维多粒子系统中的应用,重点关注表面台阶涨落及其相关的时间依赖粗糙度。基于动力学蒙特卡洛模拟构建数据集后,我们训练了一个条件GAN来随机传播系统状态随时间演化,从而能够以较低计算成本生成新序列。文中讨论了针对标准GAN的改进措施,这些改进有助于提升收敛性并提高精度。经训练的网络被证明能够定量复现平衡态与动力学性质(包括标度律),其与精确值的偏差在百分之几以内。本文还对方法的推断局限性及未来发展方向进行了批判性讨论。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2025年10月17日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员