Feature attribution is the dominant paradigm for explaining deep neural networks. However, most existing methods only loosely reflect the model's prediction-making process, thereby merely white-painting the black box. We argue that explanatory alignment is a key aspect of trustworthiness in prediction tasks: explanations must be directly linked to predictions, rather than serving as post-hoc rationalizations. We present model readability as a design principle enabling alignment, and PiNets as a modeling framework to pursue it in a deep learning context. PiNets are pseudo-linear networks that produce instance-wise linear predictions in an arbitrary feature space, making them linearly readable. We illustrate their use on image classification and segmentation tasks, demonstrating how PiNets produce explanations that are faithful across multiple criteria in addition to alignment.


翻译:特征归因是解释深度神经网络的主流范式。然而,现有方法大多仅松散地反映模型的预测生成过程,本质上只是对黑箱模型进行"粉饰"。我们认为,解释对齐性是预测任务可信度的关键方面:解释必须与预测直接关联,而非作为事后合理化工具。我们提出模型可读性作为实现对齐的设计原则,并介绍PiNets作为在深度学习背景下实现该原则的建模框架。PiNets是一种伪线性网络,能够在任意特征空间中生成实例级线性预测,从而实现线性可读性。我们通过在图像分类和分割任务上的应用展示,证明PiNets除了实现对齐性外,还能生成满足多重保真度标准的解释。

0
下载
关闭预览

相关内容

【ICML2022】知识图谱上逻辑查询的神经符号模型
专知会员服务
28+阅读 · 2022年5月25日
UTC: 用于视觉对话的任务间对比学习的统一Transformer
专知会员服务
14+阅读 · 2022年5月4日
【NAACL2021】信息解缠正则化持续学习的文本分类
专知会员服务
22+阅读 · 2021年4月11日
【WSDM2021】拓扑去噪的鲁棒图神经网络
专知会员服务
27+阅读 · 2020年11月14日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
17+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
Arxiv
0+阅读 · 1月6日
VIP会员
相关VIP内容
【ICML2022】知识图谱上逻辑查询的神经符号模型
专知会员服务
28+阅读 · 2022年5月25日
UTC: 用于视觉对话的任务间对比学习的统一Transformer
专知会员服务
14+阅读 · 2022年5月4日
【NAACL2021】信息解缠正则化持续学习的文本分类
专知会员服务
22+阅读 · 2021年4月11日
【WSDM2021】拓扑去噪的鲁棒图神经网络
专知会员服务
27+阅读 · 2020年11月14日
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
相关基金
国家自然科学基金
17+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员