Exponential-family random graph models (ERGMs) are a family of network models originating in social network analysis, which have also been applied to biological networks. Advances in estimation algorithms have increased the practical scope of these models to larger networks, however it is still not always possible to estimate a model without encountering problems of model near-degeneracy, particularly if it is desired to use only simple model parameters, rather than more complex parameters designed to overcome the problem of near-degeneracy. Two new network models related to the ERGM, the Tapered ERGM, and the latent order logistic (LOLOG) model, have recently been proposed to overcome this problem. In this work I illustrate the application of the Tapered ERGM and the LOLOG to a set of biological networks, including protein-protein interaction (PPI) networks, gene regulatory networks, and neural networks. I find that the Tapered ERGM and the LOLOG are able to estimate models for networks for which it was not possible to estimate a conventional ERGM, and are able to do so using only simple model parameters. In the case of two neural networks where data on the spatial position of neurons is available, this allows the estimation of models including terms for spatial distance and triangle structures, allowing triangle motif statistical significance to be estimated while accounting for the effect of spatial proximity on connection probability. For some larger networks, however, Tapered ERGM and LOLOG estimation was not possible in practical time, while conventional ERGM models were able to be estimated only by using the Equilibrium Expectation (EE) algorithm.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年1月29日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员