Ontology operations, e.g., aligning and merging, were studied and implemented extensively in different settings, such as, categorical operations, relation algebras, typed graph grammars, with different concerns. However, aligning and merging operations in the settings share some generic properties, e.g., idempotence, commutativity, associativity, and representativity, labeled by (I), (C), (A), and (R), respectively, which are defined on an ontology merging system $(\mathfrak{O},\sim,\merge)$, where $\mathfrak{O}$ is a set of the ontologies concerned, $\sim$ is a binary relation on $\mathfrak{O}$ modeling ontology aligning and $\merge$ is a partial binary operation on $\mathfrak{O}$ modeling ontology merging. Given an ontology repository, a finite set $\mathbb{O}\subseteq \mathfrak{O}$, its merging closure $\widehat{\mathbb{O}}$ is the smallest set of ontologies, which contains the repository and is closed with respect to merging. If (I), (C), (A), and (R) are satisfied, then both $\mathfrak{O}$ and $\widehat{\mathbb{O}}$ are partially ordered naturally by merging, $\widehat{\mathbb{O}}$ is finite and can be computed efficiently, including sorting, selecting, and querying some specific elements, e.g., maximal ontologies and minimal ontologies. We also show that the ontology merging system, given by ontology $V$-alignment pairs and pushouts, satisfies the properties: (I), (C), (A), and (R) so that the merging system is partially ordered and the merging closure of a given repository with respect to pushouts can be computed efficiently.


翻译: Ontolog 操作, 例如对齐和合并, 在不同场合广泛研究和实施, 比如, 绝对操作, 关系代数, 图形语法, 不同关注 。 但是, 设置中 的对齐和合并操作具有一些通用属性, 例如 : 一元能力、 通性、 关联性和代表性, 分别由 (I) 、 (C) 、 (A) 和 (R) 分别标注, 定义于一个本体合并系统 $ (mathfrak{ O}, comm, commerge) $, 其中 $\ mayfrak{ O} 。 但是, $\ sim 是一个双元关系, 以( mathfrak} 标注 ) 和 美元 立體數值為 。 在 Oralfrequestal 上, (Oral_ blickral_ ) 也可以使用 立定義 。 (Oral_ b) 和 立體 立體 立體 立體 。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月6日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员