We introduce a novel convolutional neural network architecture, termed the \emph{periodic CNN}, which incorporates periodic boundary conditions into the convolutional layers. Our main theoretical contribution is a rigorous approximation theorem: periodic CNNs can approximate ridge functions depending on $d-1$ linear variables in a $d$-dimensional input space, while such approximation is impossible in lower-dimensional ridge settings ($d-2$ or fewer variables). This result establishes a sharp characterization of the expressive power of periodic CNNs. Beyond the theory, our findings suggest that periodic CNNs are particularly well-suited for problems where data naturally admits a ridge-like structure of high intrinsic dimension, such as image analysis on wrapped domains, physics-informed learning, and materials science. The work thus both expands the mathematical foundation of CNN approximation theory and highlights a class of architectures with surprising and practically relevant approximation capabilities.


翻译:我们提出了一种新颖的卷积神经网络架构,称为\emph{周期性CNN},该架构将周期性边界条件引入卷积层。我们的主要理论贡献是一个严格的逼近定理:在$d$维输入空间中,周期性CNN能够逼近依赖于$d-1$个线性变量的岭函数,而在更低维的岭设置($d-2$个或更少变量)中此类逼近是不可能的。这一结果建立了对周期性CNN表达能力的一个精确刻画。除了理论意义外,我们的研究表明周期性CNN特别适用于数据天然具有高内在维度岭状结构的问题,例如环绕域上的图像分析、物理信息学习以及材料科学。因此,这项工作既拓展了CNN逼近理论的数学基础,也突显了一类具有出人意料且具有实际应用价值的逼近能力的架构。

0
下载
关闭预览

相关内容

Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
60+阅读 · 2022年5月5日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
知识图谱最新研究综述
深度学习自然语言处理
45+阅读 · 2020年6月14日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
69+阅读 · 2022年9月7日
Arxiv
11+阅读 · 2018年7月31日
VIP会员
相关VIP内容
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
60+阅读 · 2022年5月5日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
知识图谱最新研究综述
深度学习自然语言处理
45+阅读 · 2020年6月14日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员