Synthetic Benchmark Problems (SBPs) are commonly used to evaluate the performance of metaheuristic algorithms. However, these SBPs often contain various unrealistic properties, potentially leading to underestimation or overestimation of algorithmic performance. While several benchmark suites comprising real-world problems have been proposed for various types of metaheuristics, a notable gap exists for Constrained Multi-objective Optimization Problems (CMOPs) derived from practical engineering applications, particularly in the domain of Battery Thermal Management System (BTMS) design. To address this gap, this study develops and presents a specialized benchmark suite for multi-objective optimization in BTMS. This suite comprises a diverse collection of real-world constrained problems, each defined via accurate surrogate models based on recent research to efficiently represent complex thermal-fluid interactions. The primary goal of this benchmark suite is to provide a practical and relevant testing ground for evolutionary algorithms and optimization methods focused on energy storage thermal management. Future work will involve establishing comprehensive baseline results using state-of-the-art algorithms, conducting comparative analyses, and developing a standardized ranking scheme to facilitate robust performance assessment.


翻译:合成基准问题(SBPs)常用于评估元启发式算法的性能。然而,这些SBPs通常包含各种不切实际的特性,可能导致对算法性能的低估或高估。尽管已有针对多种元启发式算法提出的包含实际问题的基准测试套件,但在源自实际工程应用的约束多目标优化问题(CMOPs)领域,特别是在电池热管理系统(BTMS)设计中,仍存在显著空白。为填补这一空白,本研究开发并提出了一个专门用于BTMS多目标优化的基准测试套件。该套件包含一系列多样化的实际约束问题,每个问题均基于近期研究通过精确的代理模型定义,以高效表征复杂的热-流体相互作用。该基准测试套件的主要目标是为专注于储能热管理的进化算法和优化方法提供一个实用且相关的测试平台。未来工作将包括使用先进算法建立全面的基线结果、进行对比分析,并开发标准化的排名方案,以促进稳健的性能评估。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员